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ABSTRACT

In this paper, we analyzed the problem of studyamglly the scalar curvatur® of the three dimensional surfaces
foliated by an equiform motion of catenary curveHuclidian five spade®. We express the scalar curvatdref the
corresponding two-dimensional surfaces as the enbtof functiongp™ coshme, @™ sinhme}, and we derive the
necessary and sufficient conditions for the cogffits to vanish identically. Finally an examplegisen to show three-

dimensional surfaces with constant scalar curvature
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1 INTRODUCTION

In physics and geometry, a catenary is a curveahatealized hanging chain or cable assumes utslemwn
weight when supported only at its ends. The cuagadU-like shape, superficially similar in appearato a parabola, but
it is not a parabola: it is a (scaled, rotatedpyraf the hyperbolic cosine. The curve appearbéndesign of certain types
of arches and as a cross section of the cater@dshape assumed by a soap film bounded by twdigdaniacular rings.
Mathematically, the catenary curve is the grapthefhyperbolic cosine function. The surface of tetion of the catenary
curve, the catenoid, is a minimal surface, spediffca minimal surface of revolution. The matheraltiproperties of the
catenary curve were first studied by Robert Hoake¢he 1670s, and its equation was derived by Lejdduygens and
Johann Bernoulli in 1691. Catenaries and relatedesuare used in architecture and engineerindyardesign of bridges
and arches, so that forces do not result in bengioigients. In the offshore oil and gas industrytéisary” refers to a steel
catenary riser, a pipeline suspended between augtiod platform and the seabed that adopts an appate catenary

shape.

An equiform transformation in the n-dimensional El&an spaceR™ is an affine transformation whose linear
part is composed by an orthogonal transformatiod anhomothetical transformation {3}-{10}. Such amuiform

transformation maps poinjse R™ according to the rule
x> SsAx+d,Ae S(n),se R, deR" 1)

The numbes is called the scaling factor. An equiform motigrdietermined if the parameters of (1}), including s
are given as functions of a time parametefhen an unruffled one-parameter equiform moticov@s a pointx via
X(t)=s(t) A(t)x(t)+d(t). The kinematics correspondito this transformation group is called similakinematics, see [1,
5].

In this paper, we study the scalar curvature of-tivoensional surfaces foliated by an equiform nmotaf a
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catenary curvey. Under a one-parameter an equiform motion of mp@pacez’with respect to fixed spacg Suppose
that ¢, € % which is moved according to an equiform motion.eTpoint paths of the catenary curve generate 2-
dimensional surfage containing the position of the starting catenamyrve. At any moment, the infinitesimal
transformations of the motion will map the poinfdlee catenary curve, into the velocity vectors whose end points will
form an affine image ot, that will be in general catenary curve in the mgvepac&. Both curves are planar and
therefore, they span a subspaceofE™, withdim (w) < 5. This if the reason why we restrict our considera to

dimensiom = 5.

Let X(¢)be a parametrization efand X (t, ¢) the definitive 3-surfaces foliated by the equifonmtion. When
we assign our study to the properties the motioriHe limit case> 0. A first option is when approximating(t, ¢) by the
first derivative of the trajectories. The purposehis work is to determine the two-dimensionalfaoes acquired by the
equiform motion of a catenary, where scalar cumeatti is constant. The proof of our results compriseadich
computations of the scalar curvatdref the surfac&(t, ¢). As we shall discuss, equatién= constant. Furthermore, in
this caseS = 0 we show the depiction of the motion of such 2-&tef giving the equations that define the kinematic

geometry. We shall confer an example of such sesfac
2 REPRESENTATION OF THE MOTION

Let ¢, be a unit catenary in the startingx, — plane of the moving space’ centered at the origin that

represented by
X(¢) = (¢p,cosh,0,0,007,¢ € R.

Under a one-parameter equiform motiorcgfin the moving spac&? with respect to fixed spaEethe position

of a pointX(¢) € £° at time t can be represented in the fixed system a
x(t0) = s(OADx(9) +d(D),tEICR O ER, 2)
Where s(t) denotes the scaling factor of the moving systdit) = (ai,-(t)),l <1i,j <5 is an orthogonal

matrix andd (t) = (by(£), b, (t), b5 (t), by(t), bs (t))T describes the position of the origifi at the time t. For varying t and
fixed X(¢), X(t, ) gives a parametric representation of the pathtr@gectory) of(¢). Moreover, we assume that all
involved functions are of clags'. Expanding the two-dimensional surfaces giving®yusing the Taylor's expansion up

to first order, then we have
X(t, ¢) = {s(0)A(0) + [$(0)A(0) + s(0)A(0)]t}x(¢) + d(0) + td(0)
Where(.) indicates the differentiation with regard to t.

As an equiform motion has an invariant point, wa sappose that the moving frarB& and the steady fram

correspond at the zero position t=0. Then we have
A(0) =1,s(0) =1and d(0) = 0.

Thus
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X(t,¢)=[I+(T+Dt]1X(p) +td,

WhereQ = A4(0) = (w,),1 < K < 10, is a skew-symmetric matrix? Throughout this papkalues ofs, b; and

their derivatives are computed at= 0 and for simplicity, we writes’ and b;" instead ofs(0)and b;(0)

respectively. In these frames, the representationf  o0X(t, ¢) is given by
X1 1+s't tw tw, tws tw, ® by
X2 —tw; 1458t  tws twe tw; coshg by
¥ |(t,9) =| —tw, —tws 1+s't twg twe 0 +t| by |,
Xa —tw, —twg —twg 1+38't twqg 0 A
Xs —tw, —tw, —twg —twyy 1+5s't 0 !

5

Or in the equivalent form

X1 1+s't —tw, b}
X2 —tw, 1+st 2

S

| xs |t ¢) =¢| —tw, |+coshop| —tws |+¢| s | 3)
X4/ —tws —tw, b,
X —t —t '
5 (1)4 Wsg b5

For any stationary fixedin the up expression (3), we generally get a @ateshaped curve centered at the point
t(by, by, b3, by, bs) subject to the following conditions

(1)2(1)5 + (1)3(1)6 + (1)4(1)7 = 0, (4‘ - i)
w? + wi + wi = W+ wi+ w?. (4 — iQ)
3 COMPUTATION TECHNIQUE OF SCALAR CURVATURE

In this section, we compute the scalar curvasuoé the two-dimensional surfadgs¢). The proof of our results
involves explicit computations of the scalar cuwvatS of the surfac€, ¢). As we shall see, the equatiSn= const.
reduces to an expression that can viméten as a linear combination of the functifhs coshme, ¢p™ sinh me},
namel@izOZ;‘,l:O(Enrm¢" coshm¢ + F, ;,¢" sinh mqb) =0, where E, ,, and F, ,two functions are depend on the
variableg. In particular, the coefficients must vanish. Therk then is to compute explicitly these coeffidien
E,m and F, ., by successive manipulations. The authors were tblebtain the results using the symbolic program
Mathematica 9 to check his work. The computer wasduin each calculation several times, giving ustdedable

expressions of the coefficient, ,,, and F, ,,. See {3} for an example in a similar context. Tldent vectors to the

parametric curves df(t, ¢) are
Xe(t, ) = ST+ Dx(9) +d, X (t,d) = [1+ (s T+ Qtlx (¢).

Under the conditions (4), a straightforward compataleads to the coefficients of the first fundantad form
defined by

G11 = XeXE 912 = XpXir G2z = Xp X -

Where
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Ji1 = a+2aBo +y<q,’>2 +§(1 + cosh 2¢)) + 2n cosh ¢, (5-10)
Jiz=bi+Bt+ (s +yt) (¢+%sinh2¢) + w;,coshp + (b, + Nt — w ) sinh ¢, (5 —ii)

oz = G +s't+ %ytz) (1 + cosh 2¢). (5 — iii)

And

a=Y:,b?, (6 -0
B = —(=s'b; + w1b; + w;bs + w3by + w,bg), (6 —ii)
n = —(=s'by, — w1b; + wsh; + wgby + w5bs), (6 — iii)
y=s?+3h 0?, (6 — iv)

The Christoffel symbols of the second kind are i by

1 ag; dgjm | 9g;
rk =2y2 __ gkm(29im 4 Z9jm 4 99im )
ij ZZm—lg x| + ax; + xm

Wherex; € {t,¢},{i,j, k} are indices that take the values 1 or 2 Gg") is the inverse matrix Qgi]-). From

here, the scalar curvature of the surfa€g ¢) is defined by (5)

1
[T
— \'2 i 1j
S= Zi,j,l——lg / [

1
oy 2 L m mpl
ox o) + 22 (THT T — TR |-

Despite the computation of the scalar curvatSreean be obtained, for example, by using the symboli
Mathematica programme, its expression is some mgllht the zero positian= 0, the key in our proofs lies that we can

write S as

__ P(¢p™coshme,p™sinhme) _ ¥2%_oXr=o(Anm@™ coshmep+By m¢™ sinh mep) )
T Q(¢" coshmep,pmsinhmgp) T2 _o 38 _ o (Crmp™ cosh mep+Dyp ™ sinh mep)

The assumption of the constancy of the scalar turg& implies that (7) can be converts into

SQ(¢p™ coshmg, p™ sinh mep) — P(¢™ coshme, ¢p™ sinh mg) = 0. (8)
Equation (8) indicates that if we write it as a ebm combination of the functions

{¢™ coshm¢ , ¢™ sinh m¢} namely, te02o-0(Enm¢™ coshme + F, ,¢"sinhm¢p) =0, the  corresponding
coefficients must vanish. Then we describe all tirmensional surfaces with constant scalar curvageeerated by

equiform motion of catenary curve.
4 VANISHING SCALAR CURVATURE OF TWO-DIMENSIONAL SUR FACES

Throughout this section, we shall assume that wedimensional surfaceX(t,¢) has zero scalar curvature

(S = 0). From (7), we have

P(¢™ coshme,p™ sinhmep) = X2, Xi_o(Apm®™ coshme + B, @™ sinhmgp) = 0 9-10)
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Q(¢™ coshme, ™ sinhme) = Y1 _, Z%zo(Cnrm¢" coshme + D, ;,¢™ sinh md)) #0 (9 —ii)

Then the work consists in the explicit computatiohthe coefficientsi,, ,, andB, ,,. We distinguish the case that
fill all possible cases, but we discuss this c&se () under this conditios’ # 0 andb; b, # 0. By solving the equation
(9), we have = s'b; — w,b;,n = s'b, + w,b; and y = s? + wf. Then all coefficients,, ,, = b, =0forall0 <n <
2,0 <m < 4 vanish identically. Also, the coefficients, ,,, and D,,,, # 0 for 0 <n < 4,0 <m < 8. for example the
1

coefficient (Cog) is giving by [32655"‘—Ss'2y+%5y2)].That means the equation (9) holds

i.e.,Q(¢p™ coshme, ™ sinhme) = Yk _o¥8_(Crm®™ coshmep + D, ,,¢™ sinhmep) = 0 Then the scalar curvatuse

equal zero and from expression (5), we have theviihg conditions:

b2+ bZ + bZ =0, (10 —i)
wyb; + w3by + wybg = 0, (10 — ii)
wsh; + wghy + w,bg = 0, (10 — iii)
0w +witol=wZ+wt+w?=0 (10 — iv)
This yields to:

w;=0;i=234,..,7andb; = 0;j =3,4,5. (11)

We then conclude the following theorem.

Theorem 4.1

Let X(t, ¢) be a two-dimensional surfaces acquired by thefequimotion of catenary curwg and given by (3)
under conditions giving by (4). Assué, > 0, then the scalar curvatuSevanishes identically on the surface if and only

if the following conditions hold, on the surfaceaifid only if the following two conditions:
1.b; =0,j =345,
2.0;=0,2<i>7.

Example 1
We assuma(t) = e*t such thap € R — {0} andd(¢t) = (¢,t,0,0,0)7.

Thens' = u andb; = b, = 1; b; = b, = b, = 0. Now consider the following orthogonal matrix.

cosput sinut 0 0 0
—sinu t cosut 0 0 0
A(t) = 0 0 cos?ut —sinutcosut —sinput |,
0 0 sinu t cosu t cos? ut sin ut
0 0 sinutcosut  —sinput cos?ut

Here, we havev, = wg = w;q = i, w9 = —p and wy, = 0 for Y,_,, Theorem 4.1 says that= 0. In Figure 1,
we display apiece ofX(t,¢p) of Example 1 in axonometric view pofft,¢). For this, the unit vectors

E, = (0,0,0,1,0) and Es = (0,0,0,0,1) are mapped onto the vectdis1,0) and (0,1,1), respectively (4). Then
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And

1 1+ ut ut
Y(t, ¢) = t<1> +< —ut >¢+ <1+ut>cosh¢
0 0 0

Figure 2: A Piece of Two-Dimensional Surfaces in Aonometric View Y (t, ¢p) with Zero Scalar Curvature

5 TWO-DIMENSIONAL OF SURFACESWITH S+ 0

In this section, we assume that the scalar cureatwf the two-dimensional surfacégt, ¢) defined by (3) is a

non-zero constant aridb, # 0. the identity (8) writes then as

Yhz0 2o —o(Enm¢™ coshme + F, ,¢™ sinhmg) = 0 (12)

Following the same scheme as in the case 0 studied in section 4, we begin to compute the

coefficients,, ,,, and F, ,,. Let us put = 0. the coefficients, , is giving by

F0’7 = %S,wls(srz - y) = 0.
We have two possibilities:

If w; = 0. the coefficienks , is given byF; , = —s'?y S = 0. Implies that = 0, sinces’ # 0 and from expression

(6) we havey = 0 leads to a contradiction.
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« Ify = s'2. Then the coefficient of

Ci3 = 2a®Ks?(—s? +y) = 0. We have,y =s? the coefficient ofE,¢ = iSs'wlz =0. for S#0ands #

0 and w, # 0 theny = s? leads to contradiction. As epilogue of the abowsuttion, we conclude the following

theorem
Theorem 5.1

There are not two-dimensional kinematic surfacesiobd by the equiform motion of a catenary curydhat

given by (3) under conditions (4) whose scalar atuxes$ is a non-zero constant.
6 A DOMESTIC ISOMETRY BETWEEN 2-DIMENSIONAL SURFACE S

In this section, we will research the presence dbcal isometry between a two-dimensional surfateEd
represented by (¢, ¢) in (3) with constant scalar curvature and a twaatisional surface in Euclidean three-spBte

For more specifics see (4).

Now, we construct a two-dimensional surfaté, ¢) in E3 locally isometricX(t, ¢) specified by (3). Where
X:U - Sand X:U - S defined in the same domain U such that = 911, 912 = 91z and g, = G2, in U. Then the map
@ =XoX"1:X(U)—> S is a local isometry. For this, we suppose thatitiiéal catenary curve, is the same that in

X(t, ¢). thenX(t, ¢) writes as

1+5t  ta, t@, é b,
Xt ¢) = ( —tw; 1+4+5t tos ) (cosh qb) +t| b, (13)

The computation of the first fundamental form¥dt, ¢) indicates to

gi1 = a+2ﬁ¢+7(¢2 +-(1 +cosh2¢))+2ﬁcosh¢, (14—
Giz=by +Bt+ (5 +7)(¢+3sinh2¢) + @, coshp + (B} + 7t — @) sinh ¢ (14 — ii)
G2z = (5+5t+27t?) (1 + cosh 2¢). (14 — iii)
And

@ = b{ + b + b7, (15 — i)
B = 5by — @,b, — @;bs, (15 — ii)
il = 5b, + @1by — W3bs, (15 — iii)
y=5%+of + 07, (15 — iv)

As a consequence in this case calculgledve have supposed that the original two axis ef ¢htenary are
orthogonal. This meaas®; = 0. On the other hand, the first fundamental formX¢f, ¢) was studied in (5). From¥

and¥, we have equations on the trigonometric functikink m¢ and coshmdg.
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The identitieg;; = g, imply

s'=5%w, = &;,b; =by;,b, = b,
Anda=a,B=Fy=7.6=86n=qu=g1=1&=0.
Thus

b2+ bZ =0,

0f = wf +wi+ w?,

02 = wZ + w0+ w?,

Wyby = wyb; + w3b, + wybs,

635:; = (Usb:; + w6b4’l‘ + (A)7bé

Theorem 6.1

Consider the two-dimensional surfacesEmh given by the parametrizatiaXi(t, ¢) in(3) under condition(4) and

with constant scalar curvature. U&t, ¢) be a kinematic surface E? specified by (14). If the following equations:

S =§2,(1)1 = al,bl =b1,b2 =b2,b4_2+b52 =0.

Then both surfaceX(t, ¢) and $\baX (¢, ¢) are locally isometric. The Gaussian curvaturehefgurfaceX (¢, ¢)

in Euclidean spacE® must vanish.

CONCLUSIONS

In this paper, we study the scalar curvatSiref catenary curve in Equiform motion & and we concluded the

cases of in theorem (4.1) and (5.1).
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