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ABSTRACT 

In this paper, we analyzed the problem of studying locally the scalar curvature � of the three dimensional surfaces 

foliated by an equiform motion of catenary curve in Euclidian five spaceΕ�. We express the scalar curvature � of the 

corresponding two-dimensional surfaces as the quotient of functions��� cosh 
� , �� sinh 
��, and we derive the 

necessary and sufficient conditions for the coefficients to vanish identically. Finally an example is given to show three-

dimensional surfaces with constant scalar curvature. 
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1 INTRODUCTION 

In physics and geometry, a catenary is a curve that an idealized hanging chain or cable assumes under its own 

weight when supported only at its ends. The curve has a U-like shape, superficially similar in appearance to a parabola, but 

it is not a parabola: it is a (scaled, rotated) graph of the hyperbolic cosine. The curve appears in the design of certain types 

of arches and as a cross section of the catenoid, the shape assumed by a soap film bounded by two parallel circular rings. 

Mathematically, the catenary curve is the graph of the hyperbolic cosine function. The surface of revolution of the catenary 

curve, the catenoid, is a minimal surface, specifically a minimal surface of revolution. The mathematical properties of the 

catenary curve were first studied by Robert Hooke in the 1670s, and its equation was derived by Leibniz, Huygens and 

Johann Bernoulli in 1691. Catenaries and related curves are used in architecture and engineering, in the design of bridges 

and arches, so that forces do not result in bending moments. In the offshore oil and gas industry, "catenary" refers to a steel 

catenary riser, a pipeline suspended between a production platform and the seabed that adopts an approximate catenary 

shape. 

An equiform transformation in the n-dimensional Euclidean space ℛ� is an affine transformation whose linear 

part is composed by an orthogonal transformation and a homothetical transformation {3}-{10}. Such an equiform 

transformation maps points � ∈ ℛ� according to the rule 

� → ��� + �, � ∈ ����, � ∈ ��, � ∈ ��                                                                                                               (1) 

The number   is called the scaling factor. An equiform motion is determined if the parameters of (1}), including s, 

are given as functions of a time parameter !. Then an unruffled one-parameter equiform motion moves a point " via 

X(t)=s(t) A(t)x(t)+d(t). The kinematics corresponding to this transformation group is called similarity kinematics, see [1, 

5]. 

In this paper, we study the scalar curvature of two-dimensional surfaces foliated by an equiform motion of a 
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catenary curvec#. Under a one-parameter an equiform motion of moving space Σ#with respect to fixed space $. Suppose 

that &# ⊂ Σ# which is moved according to an equiform motion. The point paths of the catenary curve generate 2-

dimensional surface�, containing the position of the starting catenary curve. At any moment, the infinitesimal 

transformations of the motion will map the points of the catenary curve &# into the velocity vectors whose end points will 

form an affine image of &# that will be in general catenary curve in the moving space$. Both curves are planar and 

therefore, they span a subspace ( of)�, withdim �(� ≤ 5. This if the reason why we restrict our considerations to 

dimension . = 5. 

Let 0���be a parametrization of &#and 0�!, �� the definitive 3-surfaces foliated by the equiform motion. When 

we assign our study to the properties the motion for the limit case→ 0. A first option is when approximating 0�!, �� by the 

first derivative of the trajectories. The purpose of this work is to determine the two-dimensional surfaces acquired by the 

equiform motion of a catenary, where scalar curvature S is constant. The proof of our results comprises candid 

computations of the scalar curvature S of the surface 0�!, ��. As we shall discuss, equation S = &3. !4.!. Furthermore, in 

this case, S = 0 we show the depiction of the motion of such 2-surface giving the equations that define the kinematic 

geometry. We shall confer an example of such surfaces. 

2 REPRESENTATION OF THE MOTION 

Let &# be a unit catenary in the starting "5"6 − plane of the moving space Σ# centered at the origin that 

represented by  

0��� = ��, cosh � , 0,0,0�8, � ∈ ℛ.  
Under a one-parameter equiform motion of &# in the moving space, Σ# with respect to fixed space$, the position 

of a point 0��� ∈ Σ# at time t can be represented in the fixed system as 

χ�t, ϕ� = s�t�A�t�χ�ϕ� + d�t�, t ∈ Ι ⊂ ℛ, ϕ ∈ ℛ,                                                                                                     (2) 

Where  �!� denotes the scaling factor of the moving system, ;�!� = <4=>�!�? , 1 ≤ A, B ≤ 5 is an orthogonal 

matrix and C�!� = DE5�!�, E6�!�, EF�!�, EG�!�, E��!�HΤ describes the position of the origin Σ# at the time t. For varying t and 

fixed 0���, 0�!, �� gives a parametric representation of the path (or trajectory) of ���. Moreover, we assume that all 

involved functions are of class ∁ 5. Expanding the two-dimensional surfaces giving by (2) using the Taylor's expansion up 

to first order, then we have 

0�!, �� = J �0�;�0� + KsL�0�A�0� + s�0�AL �0�MtNχ�ϕ� + d�0� + tdL �0�  

Where �. � indicates the differentiation with regard to t. 

As an equiform motion has an invariant point, we can suppose that the moving frame Σ# and the steady frame $ 

correspond at the zero position t=0. Then we have 

;�0� = Ι,  �0� = 1 4.C C�0� = 0.  
Thus 
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0�!, �� = OP + � ′P + Q�!R0��� + !C′,  
Where Ω = ;L�0� = �(S�, 1 ≤ Κ ≤ 10, is a skew-symmetric matrix? Throughout this paper, all values of  , E=  and 

their derivatives are computed at ! = 0 and for simplicity, we write  ′ and E= ′ instead of  L�0�and EL=�0� 

respectively. In these frames, the representation of 0�!, �� is given by

 

Or in the equivalent form 

T
UV

�5�6�F�G��W
XY �!, �� = �

T
UV

1 +  ′!−!(5−!(6−!(F−!(G W
XY + cosh �

T
UV

−!(51 +  ′!−!(F−!(G−!(� W
XY + !

T
UUV

E5′E6′EF′EG′E�′ W
XXY.                                                                                (3) 

For any stationary fixed t in the up expression (3), we generally get a catenary-shaped curve centered at the point !DE5′ , E6′ , EF′ , EG′ , E�′ H subject to the following conditions 

(6(� + (F(Z + (G([ = 0,                                                                                                                                              �\ − ]�  

(66 + (F6 + (G6  = (�6 + (Z6 + ([6.                                                                                                                                                  �\ − ]]� 

3 COMPUTATION TECHNIQUE OF SCALAR CURVATURE  

In this section, we compute the scalar curvature � of the two-dimensional surfaces�!, ��. The proof of our results 

involves explicit computations of the scalar curvature � of the surface�!, ��. As we shall see, the equation � = &3. !. 
reduces to an expression that can be written as a linear combination of the functions��� cosh 
� , �� sinh 
��, 
namely∑ ∑ D_�,`�� cosh 
� + a�,`�� sinh 
�H = 0b̀ c#G�c# , where _�,` 4.C a�,`two functions are depend on the 

variable!. In particular, the coefficients must vanish. The work then is to compute explicitly these coefficients _�,` 4.C a�,` by successive manipulations. The authors were able to obtain the results using the symbolic program 

Mathematica 9 to check his work. The computer was used in each calculation several times, giving understandable 

expressions of the coefficients _�,` 4.C a�,`. See {3} for an example in a similar context. The tangent vectors to the 

parametric curves of 0�!, �� are  

0d�!, �� = � ′Ι +Ω����� + C′, 0e�!, �� = OΙ + � ′Ι+ Ω�!R�′���.  
Under the conditions (4), a straightforward computation leads to the coefficients of the first fundamental form 

defined by 

f55 = �d�dΤ, f56 = �e�dΤ, f66 = �e�eΤ .  
Where 
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f55 =  g + 24i� + j k�6 + 56 �1 + cosh 2��l + 2m cosh � ,                                                                                  �n − ]�  

f56 = E5′ + i ! + � ′ + j !� <� + 56 sinh 2�? + (5 cosh � + �E6′ + m ! − (5�� sinh � ,                                 �n − ]]�  

 f66 = <56 +  ′! + 56 j!6? �1 + cosh 2��. �5 − AAA�  

And 

 g = ∑ E=′6�=c5 ,                                                                                                                                                                        �o − ]� 

 i = −�− ′E5′ + (5E6′ + (6EF′ + (FEG′ + (GE�′ �,                                                                                                       �o − ]]� 

 m = −�− ′E6′ − (5E5′ + (�EF′ + (ZEG′ + ([E�′ �,                                                                                                      �o − ]]]� 

 j =  ′6 + ∑ (=′6G=c5 ,                                                                                                                                                          �o − ]p� 

The Christoffel symbols of the second kind are defined by 

Γ=>q = 56 ∑ fq`6̀ c5 krsturvw + rswurvt + rsturvu l.  
Where "= ∈ �!, ��, �A, B, x� are indices that take the values 1 or 2 and �fy`� is the inverse matrix ofDf=>H. From 

here, the scalar curvature of the surface 0�!, �� is defined by (5) 

� = ∑ f=> zrΓ{|}
rv~ − rΓ{}}

rvw + ∑ DΓ=>y Γy`̀ − Γ=ỳ Γ>`y H6̀ c5 �6=,>,yc5 .  
Despite the computation of the scalar curvature � can be obtained, for example, by using the symbolic 

Mathematica programme, its expression is some hulking. At the zero position! = 0, the key in our proofs lies that we can 

write � as 

� = Ρ�e� ���� `e,e� ���� `e���e� ���� `e,e� ���� `e� = ∑ ∑ D��,ue� ���� `e���,ue� ���� `eH�����u��∑ ∑ D��,ue� ���� `e���,ue� ���� `eH�����u�� .                                                               (7) 

The assumption of the constancy of the scalar curvature � implies that (7) can be converts into 

S ���� cosh 
� , �� sinh 
�� −  Ρ��� cosh 
� , �� sinh 
�� = 0.                                                                  (8) 

Equation (8) indicates that if we write it as a linear combination of the functions ��� cosh 
� , �� sinh 
�� namely, ∑ ∑ D_�,`�� cosh 
� + a�,`�� sinh 
�Hb�c#G̀ c# = 0, the corresponding 

coefficients must vanish. Then we describe all two-dimensional surfaces with constant scalar curvature generated by 

equiform motion of catenary curve. 

4 VANISHING SCALAR CURVATURE OF TWO-DIMENSIONAL SUR FACES 

Throughout this section, we shall assume that the two-dimensional surfaces 0�!, �� has zero scalar curvature 

(S = 0). From (7), we have  

Ρ��� cosh 
� , �� sinh 
�� = ∑ ∑ D;�,`�� cosh 
� + ��,`�� sinh 
�HG�c#6̀ c# = 0                                 �� − ]�  
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���� cosh 
� , �� sinh 
�� =  ∑ ∑ D��,`�� cosh 
� + ��,`�� sinh 
�Hb�c#G̀ c# ≠ 0                              �� − ]]�  

Then the work consists in the explicit computations of the coefficients ;�,` and ��,`. We distinguish the case that 

fill all possible cases, but we discuss this case (S = 0) under this condition s′ ≠ 0 and E5′ E6′ ≠ 0. By solving the equation 

(9), we have i =  ′E5′ − (5E6′ , m =  ′E6′ + (5E5′  4.C j =  ′6 + (5′6. Then all coefficients ;�,` = E�,` = 0 for all 0 ≤ . ≤2, 0 ≤ 
 ≤ 4 vanish identically. Also, the coefficients ��,` 4.C ��,` ≠ 0 �3� 0 ≤ . ≤ 4, 0 ≤ 
 ≤ 8. for example the 

coefficient D�#,bH is giving by � 5F6 <56 �  ′G − � ′6j + 56 �j6?�. That means the equation (9) holds 

A. �. , ���� cosh 
� , �� sinh 
�� =  ∑ ∑ D��,`�� cosh 
� + ��,`�� sinh 
�Hb�c#G̀ c# ≠ 0 Then the scalar curvature � 

equal zero and from expression (5), we have the following conditions: 

EF′6 + EG′6 + E�′6 = 0,                                                                                                                                                           ��� − ]�  

(6EF′ + (FEG′ + (GE�′ = 0,                                                                                                                                             ��� − ]]�  

(�EF′ + (ZEG′ + ([E�′ = 0,                                                                                                                                           ��� − ]]]�  

 (6′6 + (F′6 + (G′6 = (�′6 + (Z′6 + ([′6 = 0                                                                                                                   ��� − ]p�  

This yields to: 

(= = 0 ; A = 2,3,4, … ,7 4.C E>′ = 0 ; B = 3,4,5.                                                                                                     (11) 

We then conclude the following theorem. 

Theorem 4.1 

Let 0�!, �� be a two-dimensional surfaces acquired by the equiform motion of catenary curve &# and given by (3) 

under conditions giving by (4). AssumeE5′ E6′ ≥ 0, then the scalar curvature � vanishes identically on the surface if and only 

if the following conditions hold, on the surface if and only if the following two conditions: 

1. E>′ = 0, B = 3,4,5,  
2.  (=′ = 0, 2 ≤ A ≥ 7.  

Example 1 

We assume  �!� = �¥d  such that ¦ ∈ ℝ − �0� and C�!� = �!, !, 0,0,0�Τ.  
Then  ′ = ¦ and E5′ = E6′ = 1; EF′ = EG′ = E�′ = 0. Now consider the following orthogonal matrix. 

;�!� =
T
UV

cos¦ !−sin¦ !000
sin¦ !cos¦ !000

00cos6¦ !sin¦ ! cos¦ !sin ¦! cos ¦!
 

00− sin¦ ! cos¦ !cos6 ¦!− sin ¦!

00− sin ¦!sin ¦!cos6¦ ! W
XY,  

Here, we have (5 = (b = (5# = ¦, (¨ = −¦ 4.C (q = 0 �3� ∑ ,[qc6  Theorem 4.1 says that � = 0. In Figure 1, 

we display apiece of 0�!, �� of Example 1 in axonometric view point©�!, ��. For this, the unit vectors _G = �0,0,0,1,0� 4.C _� = �0,0,0,0,1� are mapped onto the vectors �1,1,0� 4.C �0,1,1�, respectively (4). Then 
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0�!, �� = !
T
UV

11000W
XY +

T
UV

1 + ¦!− ¦!000 W
XY � +

T
UV

¦!1 + ¦!000 W
XY cosh �  

And 

©�!, �� = ! ª110« + ª1 + ¦!−¦!0 « � + ª ¦!1 + ¦!0 « cosh �  

 

Figure 1: Corresponding Two-Dimensional Surfaces ¬�­, ®� with Equation (2) that Approximates 

 

Figure 2: A Piece of Two-Dimensional Surfaces in Axonometric View ̄ �­, ®� with Zero Scalar Curvature 

5 TWO-DIMENSIONAL OF SURFACES WITH ° ≠ � 

In this section, we assume that the scalar curvature � of the two-dimensional surfaces 0�!, �� defined by (3) is a 

non-zero constant and E5E6 ≠ 0. the identity (8) writes then as  

∑ ∑ D_�,`�� cosh 
� + a�,`�� sinh 
�Hb�c#G̀ c# = 0                                                                                        (12) 

Following the same scheme as in the case � = 0 studied in section 4, we begin to compute the 

coefficients_�,` 4.C a�,`. Let us put ! = 0. the coefficients a#,[ is giving by  

a#,[ = 5b  ′(5�� ′6 − j� = 0.  
We have two possibilities: 

• If (5 = 0. the coefficientaF,G is given by aF,G = − ±6j � = 0. Implies thatγ = 0, since  ± ≠ 0 and from expression 

(6) we have γ = 0 leads to a contradiction. 
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• Ifj =  ±6. Then the coefficient of  

�G,F = 24b³ ′6�− ′6 + j� = 0. We have, j =  ′6 the coefficient of _6,Z = 5G � ′(56 = 0. for S ≠ 0 4.C  ′ ≠
0 4.C (5 ≠ 0 !ℎ�. j =  ′6 leads to contradiction. As epilogue of the above deduction, we conclude the following 

theorem:  

Theorem 5.1 

There are not two-dimensional kinematic surfaces obtained by the equiform motion of a catenary curve &# that 

given by (3) under conditions (4) whose scalar curvature � is a non-zero constant. 

6 A DOMESTIC ISOMETRY BETWEEN 2-DIMENSIONAL SURFACE S 

In this section, we will research the presence of a local isometry between a two-dimensional surface in Εn 

represented by 0�!, �� in (3) with constant scalar curvature and a two-dimensional surface in Euclidean three-space Εµ. 

For more specifics see (4). 

Now, we construct a two-dimensional surface 0¶�!, �� in Εµ locally isometric 0�!, �� specified by (3). Where 0: U → � 4.C 0¶: U → �̅ defined in the same domain U such that f55 = f55¶¶¶¶, f56 = f56¶¶¶¶ 4.C f66 = f66¶¶¶¶ in U. Then the map º = 0¶ ∘ 0¼5: 0�U� → �̅ is a local isometry. For this, we suppose that the initial catenary curve &# is the same that in 0�!, ��. then 0¶�!, �� writes as 

�̅�!, �� = ª1 +  ̅ ! !(½5 !(½6−!(½5 1 +  ̅ ! !(½F−!(½6 −!(½F 1 +  ̅ !« ª �cosh �0 « + ! ¾E¶5E¶6E¶F
¿                                                                              (13) 

The computation of the first fundamental form of 0¶�!, �� indicates to 

f̅55 =  g¶ + 2i̅� + j̅ k�6 + 56 �1 + cosh 2��l + 2m̅ cosh � ,                                                                                  ��\ − ]�  

f̅56 = E¶5′ + i̅ ! + � ̅′ + j̅ !� <� + 56 sinh 2�? + (½5 cosh � + DE¶6′ + m̅ ! − (½5�H sinh �                               ��\ − ]]�   
 f̅66 = <56 +  ̅′! + 56 j̅!6? �1 + cosh 2��.                                                                                                                   ��\ − ]]]�  

And 

 g¶ = E¶5′6 + E¶6′6 + E¶F′6,                                                                                                                                                         ��n − ]�   
i̅ =  ̅′E¶5′ − (½5E¶6′ − (½6E¶F′ ,                                                                                                                                               ��n − ]]�  

m̅ =  ̅′E¶6′ + (½5E¶5′ − (½FE¶F′ ,                                                                                                                                             ��n − ]]]�  

j̅ =  ̅′6 + (½5′6 + (½6′6,                                                                                                                                                       ��n − ]p�  

As a consequence in this case calculatedΕn, we have supposed that the original two axis of the catenary are 

orthogonal. This means(½6(½F = 0. On the other hand, the first fundamental form of 0�!, �� was studied in (5). From 0 

and0¶, we have equations on the trigonometric functions sinh 
� 4.C cosh 
�. 
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The identities f=> = fÀÁ¶¶¶¶ imply 

 ′ =  ̅′6, (5 =  (½5, E5′ = E¶5′ , E6′ = E¶6′   
And g = g¶, i = i̅, j = j̅, Â = Â̅, m = m̅, ¦ = ¦̅, Ã = Ã̅, (½ = 0. 
Thus 

EG′6 + E�′6 = 0,  
(½6′6 = (6′6 + (F′6 + (G′6,  
(½F′6 = (�′6 + (Z′6 + ([′6,  
(½6E¶F′ = (6EF′ + (FEG′ + (GE�′ , 
(½FE¶F′ = (�EF′ + (ZEG′ + ([E�′ . 

Theorem 6.1 

Consider the two-dimensional surfaces in Εn given by the parametrization 0�!, �� in(3) under condition(4) and 

with constant scalar curvature. Let 0¶�!, �� be a kinematic surface in Εµ specified by (14). If the following equations: 

 ′ =  ̅′6, (5 =  (½5, E5′ = E¶5′ , E6′ = E¶6′ , EG′6 + E�′6 = 0.  
Then both surfaces 0�!, �� and $\bar 0¶�!, �� are locally isometric. The Gaussian curvature of the surface 0¶�!, �� 

in Euclidean space Εµ must vanish. 

CONCLUSIONS 

In this paper, we study the scalar curvature � of catenary curve in Equiform motion at  Ε� and we concluded the 

cases of � in theorem (4.1) and (5.1). 
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